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Abstract-This article examines the static problem of the flexure of a Bernoulli-Euler beam
resting on a nonlinear Winkler-type foundation. A perturbation technique is used to solve the
nonlinear differential equation associated with the problem. Using this technique, the initially
nonlinear problem is reduced to the solution ofa set of Iinearised equations. For the successive
solution ofthese equations, some analytical methods are outlined. These methods are applicable
to either finite or infinite beams. As an example of the applications of the proposed analysis,
the problem of the flexure of a finite beam subjected to a concentrated line load. applied at an
arbitrary point of the beam. is solved. In a second example, the solution of the problem of the
flexure of a finite beam having free edges and subjected to an initial displacement at its middle
point is presented.

I. INTRODUCTION

The analysis of finite or irifinite beams resting on linearly elastic deformable media
has received considerable attention. An extensive review of the subject is given in [1].

The present study is concerned with the solution of the problem of flexure of a
linearly elastic beam resting on a nonlinear Winkler-type foundation. It is assumed that
the beam, which may be of finite or infinite length, is subjected to an arbitrarily dis­
tributed transverse load. The nonlinear elastic foundation is a hyperbolic one; that is,
a hyperbolic-type nonlinear relation is adopted to relate the stress, applied at any point
of the foundation surface, to the corresponding deflection.

For the governing differential equation of the problem, which is essentially non­
linear, an asymptotic expansion solution is assumed and a perturbation solution tech­
nique is employed. Hence, the original problem reduces to the solution of a set of
linearised differential equations. Each one of these equations may be considered as the
equation that describes the bending problem ofa beam resting on a linear elastic Winkler
foundation and subjected to a certain type of external loading.

For the successive solution of the Iinearised equations, some analytical methods
are outlined for finite or infinite beams subjected to any type of external loading as
well as any set of homogeneous or inhomogeneous boundary conditions. In more detail,
in any case in which the beam is of finite length, for each one of these Iinearised
equations, a generalised Fourier series solution may be obtained by employing the
method of Galerkin[2]. As an alternative technique, a method based on the Laplace
transformation, also suitable in any case in which the beam is a semiinfinite one, is
outlined. Finally, a solution in terms of Fourier integrals may be obtained in any case
in which the beam is an infinite one (extended from minus to plus infinity).

As an example of the applications of the proposed analysis, two particular problems
concerning the flexure ofa finite beam resting on a Winkler foundation of the hyperbolic
type are solved. In the first problem, the beam is subjected to a concentrated line load.
The load is applied, normally, at an arbitrary point of the beam. The beam is subjected
to any set of homogeneous edge boundary conditions. In the second problem. there is
no external loading applied on the beam. The beam is supposed to be subjected to a
particular set of inhomogeneous boundary conditions chosen so that the obtained so­
lution is also applicable to the problem of the flexure of a free-free beam subjected, at
its middle point, to an initial displacement.
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Finally. as a numerical exnmplc. some numerical results arc presented nnd dis­
cussed for the problem of the flexure of a finite beam having free edges and subjected
to a concentrated line load applied at its middle point. A comparison is also made with
some corresponding results obtained from the solution of the problem of the flexure
of a beam having also free edges but subjected to an initial displacement at its middle
point.

2. PROBLEM FORMULATION

In Fig. 1, the nomenclature of a beam resting on an elastic foundation is shown.
It is assumed that the beam, which may be of finite or infinite length, is a slender one
so that its small deflection flexural behaviour is governed by the classical Bernoulli­
Euler beam theory. It is further assumed that the beam is subjected to an external
transverse stress distribution p(x) and that the contact between the beam and the foun­
dation is smooth and bilateral.

The foundation is assumed to be of the Winkler type in the sense that the dis­
placement occurs immediately under the loaded area and outside this region the dis­
placements are zero[l]. For the problem under consideration, a hyperbolic-type non­
linear relation of the form

(x)::: kw(x)
q 1 + ~w(x)

(I)

is adopted to relate the stress q applied at any point x of the foundation surface to the
corresponding deflection w. In eqn (I), k is the modulus of the linear subgrade reaction,
with dimensions of stress per unit length, and ~ is a parameter, with dimensions of
(length) - I, which can be considered a measure of the nonlinear response of the elastic
foundation. When ~ = 0, eqn (I) describes the response of a linear elastic Winkler
foundation.

Under these circumstances, the Bernoulli-Euler equation for the beam flexural
displacement w is given as follows:

d4 w kbw
EJ dx4 + 1 = bp(x) ,+ ~w

(2)

where the Young's modulus E of the beam material, the moment of inertia I and the
width b of the beam have been considered as constants.

Because of the nonlinear character of eqn (2), it is natural to enquire about the
stability of any possible solution. Thus, according to the "principle of the minimum
potential energy"[3], the positive definiteness of the second variation of the potential
energy of the beam foundation elastic system must be examined. The strain energy V

pIx)

---:l..-------.-:rnlil1mlr-------~x

z,w

Fig. I. Nomenclature of a beam resting on an elastic foundation.



is given by

where

and
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kb f/2
VJ = 2" [I + '""W - loge (1 + ,""w)] dx

'"" I,

f
l'

W = b p(x) wdx,
iJ
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(3)

(4a)

(4b)

(4c)

which are the strain energy of the beam, the strain energy of the hyperbolic foundation
and the work done by the external stress distribution, respectively. The set of values
of (I.. 12 ) determines the edges and the length of the beam. Thus, (I.. 12 ) = (0, I) foi'
a finite beam of length I, (I" 12) = (0,00) for a semiinfinite beam or (1,,/2) = (-00,00)
for an infinite beam.

For equilibrium, the vanishing of the first variation 8V of the potentiaJ energy
functional yields the governing equation of the problem (2), as well as all possible sets
of the associated homogeneous boundary conditions. Each one of these sets contains
two of the following homogeneous boundary conditions,

and

(i) at a clamped edge: \I' = W' = 0,

(ii) at a pinned edge: w = w" = 0,

(iii) at a sliding edge: w' ::= w" ::= 0

(iv) at free edge: \1''' ::= 11'11/ = O.

(Sa)

(5b)

(5c)

(5d)

Hence, as may be apparent, each one of the sets of homogeneous edge boundary
conditions associated with (2) coincides with one ofthe sets ofaJl possible homogeneous
boundary conditions associated with the corresponding linear bending problem of the
beam (see, for instance, [4]). This is because the nonlinearity enters the problem only
through the response of the elastic foundation, which has been expressed in terms of
w(x) [derivatives of w do not appear in (I)].

However, a finite or a semiinfinite beam may also be subjected to inhomogeneous
boundary conditions. In what follows, any set of edge boundary conditions in which
at least one is inhomogeneous will be referred to as a set of inhomogeneous boundary
conditions.

The second variation of the potential energy can be obtained in the form

(6)

which, because of the appearance of the squared terms, is always positive definite.
Therefore, any possible solution of eqn (2) is a stable one.

3. METHOD OF SOLUTION

The governing equation of the problem, (2), may aJso be written in the following
nondimensional form:
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~ = AX, (7)

where A- I = (kb/4EI) - 1/4, with dimensions of length, is the parameter that, in the case
of a linear elastic Winkler foundation (f.L = 0), is termed as the characteristic length
of the beam foundation system. Hence, ~ E (All, A/2) is a nondimensional spatial
coordinate.

We assume that

I f.Lw(~) I~ I, (8)

either because of a small values of f.L or, in the region of validity of the small deflection
theory used here, because of small values of w(~). Hence, for analysis of the class of
problems for which (8) holds, we use a perturbation scheme. To this end, it is assumed
that an auxiliary length parameter c exists such that E = f.LC is a small number. As will
be apparent later, both parameters c and E can arise naturally in the formulation of a
particular problem in which the length of the beam, the type of the external loading
and the set of the edge boundary conditions will be specified. Under these circum­
stances, eqn (7) may be rewritten as follows:

4
(c + EW) w"V

) + 4cw =k(c + EW) p(~), (9)

where w(/V) = d4w/d~4.

Using e as a perturbation parameter, we propose, for eqn (9), an asymptotic ex­
pansion solution of the form

w(~) = ~ wn(~) e".
n=O

(10)

where it has been assumed that the sequence wn(een satisfies all necessary condtions
that guarantee the uniform convergence of this series for ~ E (All, A/2). It is further
assumed that each one of the unknown functions w,,(~) (n =0, I, ...) satisfies certain
boundary conditions chosen in such a way that the whole series, that is. w(~), satisfies
the boundary conditions of eqn (7). Substituting the expansion (10) into (9) and equating
coefficients of like powers of e, we obtain

4
w~V) + 4wo = kp(~),

4 1n-I

wlfV
) + 4wII = -k p(~) Wn-I - - ~ w;w~/~l- I,

C C ;-0

n = 0

n = 1.2, ...

(1la)

(lIb)

The result [eqn (11a») is the differential equation that describes the problem of the
flexure of a beam resting on a linear elastic Winkler foundation and subjected to an
external stress distribution p(~); for its solution, several methods have been developed
for finite or infinite beams. Furthermore, each one of (lib) (n = I, 2, ...) may be
considered as the differential equation that describes the same problem, provided that
the right-hand side is considered as a function describing an external stress distribution
that is expressed in terms of p(~)as well as all previous w;(~) (i = O. J, ...• n - 1).
Hence, using a solution of (I Ja) as a starting point, the solution of each one of (lIb)
may successively be obtained.

Because of the linear character of each one of (11). and since c- I = JL!e, (11) may
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also be obtained in the following alternative form:

w!i'VI + 4wn = 4p(~}.

II-I

(IV) + 4 4 (l:) ~ '\' I"IIV)IV" IV" = P '" 11',,_1 - JC.J ,; '''-;-1.
;=0

n = 0

n = 1.2•...
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(12a)

(I2b)

provided that the asymptotic series (10) will be replaced as follows:

w(~) = k- I i (I)" WII(~)'
11=0

(13)

Obviously. the auxiliary length parameter c as well as the perturbation parameter
E do not appear explicitly in the solution of the problem. However. as will later be
apparent. in some examples. both parameters arise naturally in any particular problem;
they may be determined whenever the solution of (12). WII(~) (n = O. I•...). may be
obtained.

In the remainder of this section. some analytical techniques will be outlined for
the successive solution of the differential equations (12). The applicability of each of
these techniques to particular problems is dependent on the length of the beam (finite.
semiinfinite or infinite) but essentially independent of both the analytical form of the
external stress distribution p(~) and the set of boundary conditions prescribed at the
ends of the beam.

However. even though with one of these techniques the solution wnW of each of
(12) may be obtained, for the evaluation of the flexural displacement of the beam w(~)

at a particular point Eo E (AI.. A/2). an infinite number of terms must be summed in
(13). Apparently, in a numerical application. the series of (13) must be truncated to a
number ofterms (say. N) chosen so that for the obtained numerical results. convergence
can be ensured to a desired accuracy.

3.1 The finite beam
An extensive review of the numerous analytical methods and approximate tech­

niques developed for the analysis of finite beams resting on a linear Winkler foundation
is given in [1]. It seems that many of them may be used to provide (11) with a recurrence­
type solution. especially when both the external stress distribution p(~) and the bound­
ary conditions are given.

The problem of the flexure of a finite beam of length I subjected to any kind of
external loading as well as any set of homogeneous edge boundary conditions was
studied by Iyengar and Anantharamu[S). They obtained a solution in the form of a
series of characteristic eigenfunctions of a freely vibrating beam. Here, a similar tech­
nique. in combination with the method of Galerkin[6) , will be employed. and a solution
will be presented for the problem of the flexure of a finite beam subjected to any set
of homogeneous or inhomogeneous boundary conditions.

Let ~ = AI be a nondimensional parameter that denotes the relative length of the
beam. Also let

x (A'''X) = X (A'''~)
III I III~'

m = 1.2•... (14)

be the set of the characteristic functilJns that describe the normal modes of vibration
of a beam subjected to a certain type of homogeneous boundary condition, where Am
values are the roots of the corresponding frequency equation (see. for instance, [7­
9]). In the interval (0. ~). the functions X", satisfy the following orthogonality conditions:

m.r=I.2•... (15a)
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where a"" is Kronecker's delta and II X", 11
2 is the square norm of X"" in (0, /), defined

according to

m::::; 1,2, ... (15b)

This is equal to t for a beam whose each edge is either a pinned or a sliding one, or
to I, for a beam with different end conditions. Also,

~/V) (Ami;) ::::; (A",i;) 4

X (A",i;)
", 13 13 III 13'

Under the conditions of (15), the functions

<1>", e~i;) ::::; X"I C\~i;) / v1311 X", II,

m ;::; 1,2, ...

m ::::; 1,2, ...

( 16)

(17)

form an orthonormal set of functions[IO], in (0, 13), which is also complete, except for
anyone of the particular cases of a free-free, a free-pinned, a free-sliding or a sliding­
sliding beam. However, in each one of these particular cases, the orthonormal set of
the functions <1>", can be constructed to be complete too. This can be done by adding
to the formal set of the functions X", some suitably chosen functions (see Appendix
and [9]). Furthermore, (16) is also valid for each one of these additional functions.

Let us now suppose that the finite beam is subjected to a certain set of inhomo­
geneous boundary conditions. We require from the solution of (l2a) wo(i;) to satisfy
this set of boundary conditions, whereas from the solution of each one of (l2b) w,,(i;)
(II ::::; I, 2, ...) to satisfy the set of the corresponding homogeneous ones. These re­
quirements guarantee that the asymptotic expansion solution (13) will satisfy the set
of the inhomogeneous boundary conditions of the problem.

The general solution of (12a) may be written as

(18)

where uo(i;) is a particular solution of (12a), whereas

Vo(i;) ::::; e(;[C. cos (i;) + Cz sin (i;)] + e-I;[C~ cos (t;) + C4 sin (i;)], (19)

is the general solution of the corresponding homogeneous differential equation. The
constant coefficients CI, • • • , C4 must be determined so that the set of the inhomo­
geneous boundary conditions of the problem are satisfied. Consequently, the particular
solution uo(i;), like each one of wn(i;) (n ::::; I, 2, ...), must satisfy the corresponding
homogeneous boundary conditions. Hence, the unknown functions uo(i;) (n ::::; I, 2,
...) as well as the external stress distribution p(t;) may be expressed in the following
generalised Fourier series forms:

n ::::; I, 2, . .. (20)

where Xm represents the set of the characteristic beam functions that satisfy the homo­
geneous boundary conditions

m = 1,2, ... (21 )
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and A nm (n = 0, I, 2, ...) are unknown constant coefficients; they will be determined
by applying, successfully, on (12) the method of Galerkin. Thus, taking into account
(15) and (16), we obtain

Clearly, (22) constitutes a recurrence-type formula. Through this formula, each
one of the unknown constant coefficients Anm may recurrently be evaluated, provided
that the external stress distribution p(~) is given in an analytical form so that the coef­
ficients Pm may be evaluated through (21), either analytically or numerically. Then,
through (18)-(20), each one of W n (n = 0, I, 2, ...) may be evaluated at any particular
point ~o E (0, 13), and hence the deflection w(~o) of the beam may be obtained through
the asymptotic series (13).

3.1.J Finite beam subjected to homogeneous boundary conditions. As a partic­
ular case of the presented analysis, we consider here the bending problem of a finite
beam subjected to a set of homogeneous edge boundary conditions. In this case, it can
be easily shown that the constant coefficients CI , ••• , C4 appearing in (19) are iden­
tically equal to zero, so that vom = °and consequently

~ X (A"'~)wo(~) == Ull(~) = ~ All'" '" Ii""" '
m=1 I-'

(23)

where X", is the set of the corresponding, to the particular boundary conditions, beam
functions and the Fourier coefficients All", are given by (22a). Furthermore, the coef­
ficients Ani" (n = I, 2, ...) given by (22b) may be obtained in the form

n = J,2,. .. (24)

where

(25)

Although from (22a) the exact values ofAom may be obtained in terms of the values
of the corresponding Pm and Am values, for the evaluation of each one of A nm (n = J,
2, ...), a series ofa double infinite number of terms must be summed in the recurrence
formula (24). Furthermore, for the evaluation of each one of wn(~) (n = 0, J, 2, ...)
at a particular point ~l E (0, 13), an infinite number of terms must be summed in (20).
In a numerical application, all these series must be truncated. The most convenient
technique is to truncate each one of the series (20) to a number of terms (say, M) chosen
so that convergence is ensured to a desired accuracy.

A further observation of the recurrence formulas (22) and (24) indicates that M
depends on 13 = )./. Since Am is a sequence of positive terms of increasing values, the
value of the term (Am ll3)4 is rapidly going to infinity, especially for small values of 13.
Therefore, the smaller the ~ (or, equivalently, the more rapidly Anm values are going
to zero, for a fixed n), the smaller the required number M.
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3.2 The semiinfinite beam
We consider next the problem of the flexure of a semiinfinitc beam resting on a

Winkler foundation of the hyperbolic type. We assume that the beam is subjected to
a set of inhomogeneous boundary conditions. This means that at least one of the hound­
ary conditions applied at the edge ~ = 0 of the beam is an inhomogeneous boundary
condition (at ~ = 00, only homogeneous boundary conditions may be considered). Under
these circumstances, the case of a beam subjected to a set of homogeneous boundary
conditions may be considered as a special case.

As in the case of the finite beam, we require from the solution of (l2a) wCJ(~) to
satisfy the set of the inhomogeneous boundary conditions of the problem. whereas from
the solution of each one of (l2b) we need wn(~) (n = 1,2, ...) to satisfy the set of the
corresponding homogeneous boundary conditions. For the solution of the differential
equations (12), a technique based on Laplace transforms will be outlined. To this end,
we shall use the notation

(26)

to denote the Laplace transformation of a certain function f(~) (see. for instance, [10]).
Upon applying the Laplace transform on both sides of each one of (12), we obtain

n = 0 (27a)

and

Wn(~) = ~-J {(S4 + 4)-1 [4;f(PWn-d - ~~~ ;f(w; W::~)-I)J}

+ ;f- I [(S4 + 4)- IBn(s»). n = 1.2. . .. (27b)

where the operator ;e - I denotes the inverse of the Laplace transformation and

n = O. I, ... (28)

is a third-degree polynomial in s, whose constant coefficients depend on the boundary
conditions applied at the end ~ = O.

The inversion denoted in the second term of the right-hand side of (27a) and (27b)
can be carried out analytically:

btl(~) = ;f - I [(s + 4) - IBII(s)]

=wn(O) cos (~) cosh (~) + ~ [ w~(O) + ~w:;'(O) ] sin (~) cosh (~)

+ ~ w~(O) sin (~) sinh (~) + ~ [ w;,(O) - ~W:;'(O)] cos (~) sinh (~).
n = O. I. . .. (29)

On the other hand. whenever, in a particular problem, the external stress distribution
p(~) is given in an analytical form, the inversions denoted in the first term of the right­
hand side of eqns (27a) and (27b) may successively be carried out either analytically
or numerically.

However, it must be noted that only two of the four boundary conditions appearing
in (29) are known at the edge ~ == 0 of the beam. The remaining two boundary conditions
must be considered as two arbitrary constants. These constants will be determined so
that regular behaviour of each one of the functions wn(~) can be ensured at ~ == 00.
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Under these circumstances, it must be further noted that the solution technique
outlined in this section might also be considered as an alternative technique for finite
beam analysis. In that case, the two arbitrary constants entering the problem through
each one of (29) must be determined so that each one of the functions wn(~) satisfies
thc appropriate boundary conditions imposed at ~ = ~ = Al (see also [II».

3.3 Tlte infinite beam
For analysis of an infinite beam resting on a linear elastic Winkler foundation and

subjected to an external stress distribution p(~) symmetrical about the ,,-axis, an ana­
lytical technique based on Fourier integral representations has been developed in [I].
Here, the same technique, generalised for an arbitrary external stress distribution, will
be employed to provide (12) with a recurrence-type solution.

The arbitrary stress distribution p(~) may be represented by a Fourier integral form
(see, for instance, [10», according to

(30a)

where

(30b)

Hence, following the procedure outlined in [I], we obtain, for (12), a recurrence-type
solution of the form

• (I:) = roc p~(TJ) cos (,,~) + q:(,,) sin ("l~) d
II" ." Jo I + (,,/0)4 TJ,

where pri'(,,) and qri'(,,) are given by (30b) and

n = 0, I, ...

n = 1,2, ...

(31)

(32a)

(32b)

Whenever the external stress distribution p(~) is given in an analytical form, each
one of w,,(E) (n = 0, 1, 2, ...) may successively be evaluated, at any ~ E (- 00, 00),
mostly numerically. Apparently, anyone of the improper integrals appearing in (30)­
(32) converges uniformly in (-00,00), either because of the term ("l!j2)4 appearing in
some of the denominators or because of the fact that usually the analytical form of p(~)
is a decaying function of ~. For these reasons, each one of wn(~) (n = 0, I, ...) is a
decaying function of ~.

4. APPLICATIONS

4.1 Finite beam subjected to a line load
As an application of the analysis developed in the preceding section, we consider

here the problem of the flexure of a finite beam resting on a hyperbolic Winkler-type
foundation. The beam is subjected to a line load P, with dimensions of force per unit
length. The line load is applied normally at a point ~ = ~o of the beam. In this case,
the external stress distribution p(~) may be expressed in an analytical form according
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P = >-..P. (33)

where a(~ - ~) is Dirac's delta function.
We further assume, for simplicity, that the beam is subjected to a set of homo­

geneous boundary conditions and let XI1l be the set of corresponding characteristic
beam functions. Then, (21) gives

m :;; 1.2•.. , (34)

Under these circumstances. the asymptotic expansion solution (13) may be ob­
tained in the form

The functions w,,(~) are given. in nondimensional form. as follows:

(35)

WII(~) :;; ~ I Amll Xm e';~)·

where

n = 0, 1,2" .. (36)

and

m = 1.2•.. ,

are nondimensional constant coefficients.
A comparison of (10) and (35) gives

(37)

and therefore

E Pc:;;;:;; k'

P.,.
E =-

k
(38)

(39)

As was mentioned previously. both parameters c and E. defined as above. arise naturally
in the formulation of the considered problem. Hence, for sufficiently small values of
the nondimensional parameter PvJk, we expect uniform convergence of the asymptotic
expansion (35). Furthermore, according to the presence of the factor W' + I, which di­
vides the nth term of the series in (35), the longer the beam is, the wider is the interval
of values of the parameter PvJk, in which the asymptotic expansion (35) converges
uniformly.
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Finally. it might be of interest to point out the symmetry of the function li'n(~) with
respect to the variubles ~ and ~). Since the function (P/kl3)li'n(~) represents the solution
ofthe corresponding linear problem, formed by (lla) and (33), this symmetry expresses
physically the well-known "reciprocal theorem of Betti"; mathematically. it is a con­
sequence of the fact that the function (413) - Ili'oW is the Green's function of the dif­
ferential equation (lla). This observation, which might be of particular interest in prob­
lems related to the static or dynamic behaviour of finite beams resting on lillearly elastic
Winkler-type media, has been also pointed out in the forced vibration problem of strings
and beams subjected to a concentrated unit load that is time harmonie[12].

4.2 Finite beam subjected to an initial displacement
As a second application of the analysis presented in Section 3, we consider now

the problem of the flexure of a finite beam resting on a Winkler foundation of the
hyperbolic type and subjected to the following set of inhomogeneous boundary con­
ditions:

w(O) = 8, w'(O) = w"(f3) = w"'(f3) = O. (40)

These are the boundary conditions of a beam whose one edge ~ = 0 is subjected to an
initial displacement 8, while the rotation is prevented and the other edge of the beam
~ = 13 is free.

lt is further assumed that there is no external loading applied on the beam. Hence,
p(~) = 0 and the differential equations (12) are simplified as follows:

w!tV) + 4wo = 0,
,,-I

I·I'(/V) + 411' = _ ~ II'. II'(/V!
" " ~ I 11-1-1,

;=0

n = 0

II = 1.2•...

(41)

where, according to the solution procedure developed in Section 3.1, the unknown
functions w,,(~) (n = 0, I. 2•...) must satisfy the following boundary conditions:

11'0(0) = 8, 11';,(0) = 11';;(13) = wO'(/3) = 0,

w,,(O) = II'~(O) = w~(f3) = w~:(f3) = 0,

II = 0

n = 1,2, ...
(42)

It is apparent that wo(~) must satisfy the set of the inhomogeneous boundary conditions
of the problem while each one of w,,(~) (II = I, 2, ...) must satisfy the set of the
corresponding homogeneous ones, namely, the boundary conditions of a clamped-free
beam.

Under these circumstances, the asymptotic expansion solution (13) may be ob­
tained in the form

w(~) = 8 ~ (~8)" K',,(E),
11-=0

where the functions wn(E) are given, in nondimensional form, as follows:

(43)

n = 0
(44a)

n = 1,2, ... (44b)

The nondimensional constants C..... , C4 appearing in (44a) are such that wo(E)
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satisfies the following boundary conditions:

(45)

the functions XIII appearing in (44b) represent the set of characteristic beam functions
of a clamped-free beam, and

A",PI =

n = I

n = 2

n = 3,4, ...

(46a)

(46b)

(46c)

where I mr/ is given by (25) and

100m =LI

[wo(~Tj)F X",(AmTj) dTj,

101m =LI

Wo(~Tj) X/(A/Tj) X(A",Tj) dTj.

A comparison of(IO) and (43) gives

(47a)

(47b)

E == ,..,8, (48)

and therefore

E
C = - == 8.,.., (49)

Again, both parameters c and E, defined as above, arose naturally in the formulation
of the stated problem. Hence, for sufficiently small values of the nondimensional pa­
rameter j.l.8, we expect the uniform convergence of the asymptotic expansion (43).

Finally, it would be of practical interest to point out that the solution procedure
developed in this section is also applicable to the case of a finite beam, of relative
length 2~, having free ends and subjected to an initial displacement 8 at its middle
point. In this particular case, the displacement IV(~) must be symmetric with respect
to the middle point of the beam. The second of the boundary conditions (40), related
to zero slope, guarantees this symmetry, provided that the point ~ == 0 is considered
as the middle point of the beam; the edges of the beam are located at ~ = =~.

5. NUMERICAL RESULTS AND DISCUSSION

For a numerical example, we consider here the case of a finite beam, with free
ends, resting on a Winkle) foundation of the hyperbolic type and subjected to a point
load applied at the middle point ~ = ~/2 of the beam.

Since, for a free-free beam, the even characteristic beam functions X 2 , X4 , •••

are antisymmetric with respect to ~ == ~/2, only the terms containing the symmetric,
with respect to ~ == ~/2, functions XI, X3 , ••• contribute in the summations denoted
in eqn (36). This fact can easily be checked through eqn (37) and is in accordance with
the physical problem. Indeed, since the point load is applied at the middle point of the
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Table I. The influence of Nand M on the value 11i'(~/2IJ of the nondi~,!sional middle point deflection of
a finite beam subjected to a concentrated line load applied at its middle point

N

M :! 3 4 5 6 7

I 0.3333 0.4444 0.4815 0.4938 0.4979 0.4993 0.4998
2 0.5269 0.7089 0.7589 0.7697 0.7720 0.7729 0.7734
3 0.5415 0.7257 0.7734 0.7842 0.7870 0.7880 0.7884
4 0.5439 0.7281 0.7757 0.7866 0.7893 0.7903 0.7907
5 0.5442 0.7284 0.7760 0.7868 0.7896 0.7906 0.7910

beam, the deflection curve of the beam, given by (35), must be symmetric with respect
to ~ = ~/2; hence, each one of the functions wn(~) (n = 0, 1, 2, ...) given by (36)
must be also symmetric with respect to the middle point of the beam.

For numerical calculations, a CP6 Honeywell digital computer was used. The ef­
ficiency of the mathematical technique outlined in the previous sections can be ascer­
tained by examining the numerical results illustrated in Table I. There, for a beam
foundation system with 13 = 3 and E = (PJJik) = I, the values of the nondimensional
middle point deflection w(J3/2) = (kIP)w(J3/2) obtained by increasing the values of both
numbers Nand M, in which the series in (35) and (36), respectively, were truncated,
are tabulated. The convergence of the presented results shows that five terms in the
series (36) and seven terms in the series (35) were needed to provide results with an
accuracy of three significant figures. However, as has already been mentioned, to obtain
results of the same accuracy, M must be larger (smaller) for longer (shorter) beams,
while N must be larger (smaller) for larger (smaller) values of E, provided that for those
values of E the asymptotic expansion (35) still converges uniformly. It is also of interest
to point out that the lirst column in Table I (N = I) shows the convergence of the
corresponding numerical results in the case in which the beam is resting on a linear
Winkler foundation (E = 0).

The nondimensional deflection lN~) of the left half of a beam, with 13 = 3, is
illustrated in Fig. 2 for several values of E E (0, 2). The curve with E = 0 represents
the deflection curve when the beam is resting on a linear Winkler foundation; it gives
results that arc identical to those developed by Seely and Smithll3] (see also 1ID,
through the equations given by Hetenyi1l4]. In Fig. 3, the corresponding deflection
curves have been plotted for an effectively longer beam, 13 = 5. From both Figs. 2 and
3, it is apparent that increasing the nonlinearity parameter E also increases the deflection
of the beam.

Figure 4 illustrates the deflection w(~) of the left half of a free-free beam, with 13

E Ol£l5/k
/3 0 >'1 • 3

0.25
(1/3-

1.5L- ----l

Fig. 2. Nondimensional deflection of the left half of a free-free beam resting on a Winkler
foundation of th£ hyperbolic type and subjected to a concentmted line load applied at its middle
point rlt'(~) = (Plk)w(~)l.
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0.5

1.0

0.25
tiP- 0.5

Fig. 3. Nondimensional deflection of the left half of a free-free beam resting on a Winkler
foundation of th£ hyperbolic type and subjected to a concentrated line load applied at its middle
point Iw(~) = (P/k)";(~)).

{IP-

__ hyperbolic

0.5

1.5'------------__---1

Fig. 4. Deneclion of lhe left half of a free-free beam resling on a Winkler foundlltion of the
hyperbolic type llnd subjected 10 lln initial displacement at its middle point.

= 3, which is subjected to an initial displacement at its middle point. The analysis
presented in Section 4.2 is used to obtain these numerical results. Furthermore, for
the purpose of comparison, attention was taken so that the middle point deflection of
each one of the curves presented in Fig. 4 was the same as that· of the corresponding
curve illustrated in Fig. 2. To this end, the numerical value of the factor kIP was
considered as unity so that the value of the nondimensional parameter E in Fig. 2 would
simply give the numerical value of the parameter jJ. [units of (length)- I]; this value
multiplied by the numerical value of the middle point deflection of the corresponding
curve then gives the value of the nondimensional parameter E = jJ.& in Fig. 4. Hence,
comparing corresponding curves, we can see that the effect of the initial displacement
is more local than the corresponding effect of the applied load. This difference between
corresponding curves becomes larger as long as we increase the value of jJ..

On the other hand, each one of the dashed lines showed in Fig. 4 represents the
corresponding deflection curve of the beam when the Winkler foundation is a linear
one (jJ. = 0). As in the case of the line load, it is again apparent that the effect of the
nonlinearity parameter E is to increase the deflection of the beam.

6. CONCLUSIONS

This study presents the applications of a perturbation technique for the solution
of the nonlinear equation governing the static problem of the flexure of a Bernoulli­
Euler beam resting on a Winkler foundation of the hyperbolic type and subjected to
an arbitrary extemalloading.Using this technique, the initially nonlinear problem has
been reduced to the solution of linearised differential equations. For the successive
solution of these linearised equations, some analytical methods have been outlined.
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Among these analytical methods, of particular interest seems to be the one pre­
sented in Section 3.1, concerned with analysis of the problem of the flexure of finite
beams. This method may easily be extended in two dimensions, so that the corre­
sponding problem of homogeneous or cross-ply laminated thin elastic plates[15, 16],
subjected to any set of homogeneous or inhomogeneous boundary conditions, can be
solved. A further extension might also be made with respect to corresponding problems
concerned with homogeneous or laminated composite thin elastic shell segments[l7­
19], provided that a suitable set of characteristic beam functions satisfying the shell
edge boundary conditions may be found.

On the other hand, this method might also be used for the approximate solution
of corresponding problems concerned with semiinfinite or infinite beams resting on a
Winkler foundation of the hyperbolic type, especially when, from physical consider­
ations, the deflection curve of the beam is expected to be a decaying function of the
axial coordinate. In such a case, one has to replace the infinite beam with a finite one
whose length I is large enough so that at locations remote from the origin the regular
behaviour of the deflection curve can be ensured.
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APPENDIX

011 the (·ompletelle.vs of the characteristic be(lm f/lnctio/lS
Let Xm(Am~P) (m = 3,4, ...) be the set of the characteristic functions for a free-free beam(7-9]. Each

one of these functions, except the orthogonality conditions (15) and the property (16), is also satisfying the
boundary conditions

The functions

~, It=o = ~, It-Ii = x:':, It-o = x:':. It-Ii = 0, m = 1,2, ... (AI)

(A2)

also satisfy the boundary conditions (AI). Furthermore,

f XI Xm dE = c (:mr f X1~V) dE = c (:J3

X',;: I: = 0, m = 3,4, .. . (A3)
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and
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= n (~.r [(~) ~;;. -~I] I: = o. III = 3.4.... (A4)

Equations (A2) and (A3) state thai. in the inlerval 10. ~). XI and X2 <lrc orthogonal 10 X", (III = 3.4•... ).
Thereforc. for the construction of a complete orthonormal basis of functions c1J", (see also (17)J. the functions
XI and X2 must complete the set of the chal"'c1cteristic functions X", (m = 3. 4•... ). To this end. and in
order for the three unknown constants c. CI and C2 to be determined. the three orthogonality conditions.

i.j = 1.2 (AS)

must be used. Then. it can be shown that

By following a similar procedure. it can be shown that the constant function

XI = I

(in the case of a free-sliding or a sliding-sliding beam) or the function

(A6)

(A7)

(A8)

(in the case ofa free-pinned beam) must be added to the set ofthe corresponding characteristic beam functions.
Finally. introduction of the parameter AI = 0 (as well as A2 = 0 in the case of the characteristic beam
functions of the free-free beam) guarantees that for each one of these additional functions. the property (16)
is also valid.


